QSRR Models for Kováts’ Retention Indices of a Variety of Volatile Organic Compounds on Polar and Apolar GC Stationary Phases Using Molecular Connectivity Indexes
نویسندگان
چکیده
Quantitative structure-retention relationship (QSRR) approaches, based on molecular connectivity indices are useful to predict the gas chromatography of Kováts relative retention indices (GC-RRIs) of 132 volatile organic compounds (VOCs) on different 12 (4 apolar and 8 polar) stationary phases (C(67), C(103), C(78), C(∞), POH, TTF, MTF, PCL, PBR, TMO, PSH and PCN) at 130 °C. Full geometry optimization based on Austin model 1 semi-empirical molecular orbital method was carried out. The sets of 30 molecular descriptors were derived directly from the topological structures of the compounds from DRAGON program. By means of the final variable selection method, which is elimination selection stepwise regression algorithms, three optimal descriptors were selected to develop a QSRR model to predict the RRI of organic compounds on each stationary phase with a correlation coefficient between 0.9378 and 0.9673 and a leave-one-out cross-validation correlation coefficient between 0.9325 and 0.9653. The root mean squares errors over different 12 phases were within the range of 0.0333-0.0458. Furthermore, the accuracy of all developed models was confirmed using procedures of Y-randomization, external validation through an odd-even number and division of the entire dataset into training and test sets. A successful interpretation of the complex relationship between GC RRIs of VOCs and the chemical structures was achieved by QSRR. The three connectivity indexes in the models are also rationally interpreted, which indicated that all organic compounds' RRI was precisely represented by molecular connectivity indexes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1365/s10337-010-1741-4) contains supplementary material, which is available to authorized users.
منابع مشابه
Novel Atom-Type-Based Topological Descriptors for Simultaneous Prediction of Gas Chromatographic Retention Indices of Saturated Alcohols on Different Stationary Phases
In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first...
متن کاملInformatics aided QSRR study of retention index of some volatile compounds
In the present work, an artificial neural network (ANN) model was used to study the quantitative structure retention relationship (QSRR) of retention index (RI) of some volatile compounds in natural cocoa and conched chocolate powder. Molecular structural descriptors are selected using genetic algorithm to construct the nonlinear QSRR models, kernel partial least squares PLS (KPLS) and Levenber...
متن کاملEstimation of Kováts Retention Indices Using Group Contributions
We have constructed a group contribution method for estimating Kováts retention indices by using observed data from a set of diverse organic compounds. Our database contains observed retention indices for over 35,000 different molecules. These were measured on capillary or packed columns with polar and nonpolar (or slightly polar) stationary phases under isothermal or nonisothermal conditions. ...
متن کاملQSRR Study of Organic Dyes by Multiple Linear Regression Method Based on Genetic Algorithm (GA–MLR
Quantitative structure-retention relationships (QSRRs) are used to correlate paper chromatographic retention factors of disperse dyes with theoretical molecular descriptors. A data set of 23 compounds with known RF values was used. The genetic algorithm-multiple linear regression analysis (GA-MLR) with three selected theoretical descriptors was obtained. The stability and predictability of the ...
متن کاملQuantitative structure—retention relationship analysis of nanoparticle compounds
Genetic algorithm and partial least square (GA-PLS), the kernel PLS (KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlationbetween retention time (RT) and descriptors for 15 nanoparticle compounds which obtained by thecomprehensive two dimensional gas chromatography system (GC x GC). Application of thedodecanethiol monolayer-protect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 72 شماره
صفحات -
تاریخ انتشار 2010